
Radio Astronomy VSR Interface (RAVI)
Architecture and Protocol Definition

Requirements
The Radio Astronomy Group at JPL needs the ability to do some post
processing of data recorded on the VLBI Science Receiver (VSR) at the
station so that investigators and operators can view Radio Astronomy
specific plots and analyze data, in real-time or near real-time, in a
manner that the VSR does not or cannot provide. This will require
another computer, which can be called the Radio Astronomy VSR
Interface (RAVI), at the station which will download data files from the
VSR, do the necessary post processing, and pass plots and other data to
a client process (exp_control), the Radio Astronomy Controller (RAC), or
other hosts.

The RAVI needs to be a relatively fast machine for processing large
amounts of data and doing floating-point intensive operations such as
FFTs. The RAVI needs a command interface for exp_control that
specifies what plots to send, how many points and averages in the FFT
etc… The RAVI will also need to provide an interface that allows
exp_control to control the VSR for running the experiment that
generates VSR data files to process.

Basic Architecture
The diagram below shows the RAVI in relation to the VSR and
exp_control. The RAVI is a multiprocessor Linux computer with
100MBits/sec access to the LAN and large amounts of disc space for
storing data files from the VSR. To run an experiment, exp_control will
open a connection, spawning a client on the RAVI. This client will be
used a proxy for controlling the VSR by sending commands for
configuration and data recording and receiving command responses. At
the same time, exp_control will open another connection to the RAVI and
send commands that control data file transfer from the VSR to the RAVI
as well as specifying which parameters use in post-processing.

VSR Control

To control and run VSR experiments, exp_control first initiates a bi-
directional socket connection on the RAVI using port 11000. This spawns
a VSR text client (tclient). exp_control then passes a string of text
providing station and VSR information to the tclient of the form:

“<dss_id> <vsr_id>”

where: dss_id is 10, 11, 13, 21, 40 or 60
(w)vsr_id is vsr1a, vsr1b, vsr2a, vsr2b

which opens a connection to a specific VSR. A status message of the
form:

“Client Connected”

is sent back to exp_control indicating that the VSR is ready to accept
commands. Next exp_control sends a set of commands for running the
VSR experiment using the VSR command language defined in section 2
of the Software Operators Manual or SOM (DSMS 837-037, Rev B).
These commands include choosing the IF source, setting the ADC
attenuation, setting the frequency, configuring the sub-channels and
specifying the data file configurations.

The following example shows a simple set of commands that might be
used to run a radio astronomy experiment:

IFS 14_X_RCP
ATT AUTO
FROV 8403456789
CHAN 1 100:8 0 1:2 0
CHAN 2 0 50:16 0 8:2
RECFN 1N1 vsr1a_100KHz_8bit
RECFN 1W1 vsr1a_1MHz_2bit
RECFN 2N1 vsr1a_50KHz_16bit
RECFN 2W2 vsr1a_8MHz_2bit
DDCLO ALL 303
RUN
FGAIN ALL AUTO
REC ALL ENABLE
+300 REC ALL DISABLE
HALT
QUIT

These commands choose the IF source DSS 14 at X-band RCP, set the
front end attenuation, configure the VSR to point at a fixed RF
frequency, configure 2 channels with sub-channels with one narrowband
and one wideband each, set the local oscillators to automatically
position the center of the channels to the specified fixed RF frequency
and put the VSR into the RUN state. Data filenames are set for each
sub-channel. Recordings are made of all configured sub-channels for 5
minutes after which the VSR is shut down. Responses to the commands,
specified in section 4 of the SOM, are sent back to exp_control and can
be parsed for status.

Post Processing Control
Opening a bi-directional socket on port 12000 of the RAVI establishes a
command channel for controlling the post processing. exp_control can
then send commands specifying how to process data files recorded
using the VSR client proxy. The post processing data products are stored
in files with filenames that can identify the content. These files can be
NFS shared between the RAVI and exp_control and are in ASCII format to
avoid any endian (byte order) issues between different platforms.

Post Processing Commands
The post processing software on RAVI consists of a command processor
and multiple commands that can be run from the command processor
interface over the socket. Some of the commands can be run as stand-

alone applications from the unix command line of the RAVI. These
include CORR, FFT and STOKES, all of which will plot with results with
gnuplot as well as create ascii text files with data when run from the
unix command line of the RAVI The command processor uses a ‘$’
prompt to indicate a state ready to process commands. The commands
currently implemented are:

HELP – Provide a list of commands
Usage:
HELP COMMAND = <string> - provide additional help for <string>

CORR – correlate two data sequences
Usage: CORR [-ahlt] vsr_host data_file1 data_file2 num_bin int_time
 arguments:
 -a Align the sequences for maximum correlation (peak
 lag is centered)
 -h Use a Hanning window on the fft input data points
 -l Process VSR data files stored in local unix format
 -t {time} ASCII string in YY/DDD/HH:MM:SS format that
 specifies the time to start processing the data files
 (default: last record)
 vsr_host Name of VSR to get file(s) from
 data_file1 Name of first BLS data file on the VSR to process
 data_file2 Name of second BLS data file on the VSR to process
 num_bin Number of bins in the cross correlation spectrum
 int_time Integration period in seconds, uses float if < 1,
 integer if >= 1

DELETE – close running processes or list them
Usage:
DELETE TASK = <string> - Delete Post Processing Task
 TASK = taskID - delete specified task
 TASK = ALL - delete all tasks
 TASK = NULL - list tasks

FFT – generate a spectrum plot of a data sequence
Usage: FFT [-hlt] vsr_hostname data_filename num_pts num_avg
 arguments:
 -h Use a Hanning window on the fft input data

points
 -l Process VSR data files stored in local unix
 format
 -t {start_time} ASCII string in YY/DDD/HH:MM:SS format that specifies

the time to start processing the VSR data file (default:
last record)

 host Name of VSR to get file from
 data_filename Name of BLS data file on the VSR to process
 num_pts Number of data points to use in the FFT
 num_avg Number of FFTs to average together

FILE – download a VSR data file and store it on the RAVI
FILE VSR_ID = <string> VSR_FILE = <string> LOCAL_FILE = <string>

- Copy VSR data at VSR_ID:_FILE to LOCAL_FILE

STOKES – generate stokes parameters from two data sequences
Usage: STOKES [-ahlt] vsr_host data_file1 data_file2 num_bin int_time
 arguments:
 -a Align the sequences for maximum correlation (peak

lag is centered)
 -h Use a Hanning window on the fft input data points
 -l Process VSR data files stored in local unix format
 -t {time} ASCII string in YY/DDD/HH:MM:SS format that specifies

the time
 to start processing the data files (default: last record)
 vsr_host Name of VSR to get file(s) from
 data_file1 Name of first BLS data file on the VSR to process
 data_file2 Name of second BLS data file on the VSR to process
 num_bin Number of bins in the cross correlation spectrum
 int_time Integration period in seconds, uses float if < 1,

integer if >= 1

QUIT- terminate execution
Usage:
QUIT

The Data Product

The data product of the RAVI is ASCII text files stored in /ravi/data,
which is actually a symbolic link for /data/ravi_data. The commands
that generate these files are FFT, CORR and STOKES. The FFT command
generates filenames of the form:

FFT_NP<num_pts>_NA<num_avg>_<vsr_filename>.

The CORR command generates filenames of the form:

ACORR_NB<num_bins>_NI<integ_time>_<vsr_filename>
XCORR_NB<num_bins>_NI<integ_time>_<vsr_filename1>_<vsr_filena
me2>

for auto and cross correlations respectively.

The STOKES command generates filenames of the form:

STOKES_NB<num_bins>_NI<integ_time>_<vsr_filename1>_<vsr_filena
me2>.

The first data column in these files contains a floating point number
representing the frequency in Hz. The second column of the FFT file
represents the log amplitude spectrum. The second and third columns
of the CORR files represent the log amplitude and phase spectrum
respectively. The second through the fifth columns of the STOKES files
represent I, Q, U and V respectively. Note that Stokes parameters in
these files assume linear polarization.

